Learning from human behavior in participatory simulation

Toru Ishida, Yohei Murakami, Yuu Nakajima

研究成果: Conference contribution

抄録

To design socially embedded systems, this paper proposes to learn from human behavior in participatory simulation, where scenario-guided agents and human-controlled avatars coexist in a shared virtual space and jointly perform simulations. To create agent models incrementally, we use machine learning technologies. We characterize agents by using a various combinations of behavior rules instantiated by the user operating his/her avatar. We apply hypothetical reasoning, which offers consistent selection of hypotheses and allows us to start with incompatible behavior rules, for incrementally improving the agent models. Using data obtained during the participatory simulation and the hypotheses including known behavior rules, we can generate an explanation for human behavior.

本文言語English
ホスト出版物のタイトルAmbient Intelligence Perspectives II - Selected Papers from the 2nd International Ambient Intelligence Forum 2009, AmIF 2009
ページ147-157
ページ数11
DOI
出版ステータスPublished - 2009
外部発表はい
イベントAmbient Intelligence Perspectives II - Selected Papers from the 2nd International Ambient Intelligence Forum 2009, AmIF 2009 - Hradec Kralove, Czech Republic
継続期間: 2009 9月 162009 9月 17

出版物シリーズ

名前Ambient Intelligence Perspectives II - Selected Papers from the 2nd International Ambient Intelligence Forum 2009, AmIF 2009
5

Conference

ConferenceAmbient Intelligence Perspectives II - Selected Papers from the 2nd International Ambient Intelligence Forum 2009, AmIF 2009
国/地域Czech Republic
CityHradec Kralove
Period09/9/1609/9/17

ASJC Scopus subject areas

  • 人工知能

フィンガープリント

「Learning from human behavior in participatory simulation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル