Learning of symbiotic relations among agents by using neural networks

Kotaro Hirasawa*, Hidemasa Yoshida, Katsushige Nakanishi, Jinglu Hu, Junichi Murata

*この研究の対応する著者

研究成果: Paper査読

抄録

Symbiotic relation among agents is regarded as one of the most basic relations in the complex systems. In this paper, a method for constructing the required symbiotic relations among the agents is proposed, where the agent is made up of a layered neural network and its parameters are trained in order to realize the required symbiotic relations. From simulations of the ecosystems, whose agent corresponds to the species, it has been clarified that the proposed method can give an ecosystem model with more flexible and more powerful representation abilities than the conventional Lotka-Volterra model.

本文言語English
ページ583-588
ページ数6
出版ステータスPublished - 2002 1月 1
外部発表はい
イベント2002 International Joint Conference on Neural Networks (IJCNN '02) - Honolulu, HI, United States
継続期間: 2002 5月 122002 5月 17

Conference

Conference2002 International Joint Conference on Neural Networks (IJCNN '02)
国/地域United States
CityHonolulu, HI
Period02/5/1202/5/17

ASJC Scopus subject areas

  • ソフトウェア
  • 人工知能

フィンガープリント

「Learning of symbiotic relations among agents by using neural networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル