Learning to simplify: Fully convolutional networks for rough sketch cleanup

Edgar Simo-Serra, Satoshi Iizuka, Kazuma Sasaki, Hiroshi Ishikawa

研究成果: Conference article査読

143 被引用数 (Scopus)

抄録

In this paper, we present a novel technique to simplify sketch drawings based on learning a series of convolution operators. In contrast to existing approaches that require vector images as input, we allow the more general and challenging input of rough raster sketches such as those obtained from scanning pencil sketches. We convert the rough sketch into a simplified version which is then amendable for vectorization. This is all done in a fully automatic way without user intervention. Our model consists of a fully convolutional neural network which, unlike most existing convolutional neural networks, is able to process images of any dimensions and aspect ratio as input, and outputs a simplified sketch which has the same dimensions as the input image. In order to teach our model to simplify, we present a new dataset of pairs of rough and simplified sketch drawings. By leveraging convolution operators in combination with efficient use of our proposed dataset, we are able to train our sketch simplification model. Our approach naturally overcomes the limitations of existing methods, e.g., vector images as input and long computation time; and we show that meaningful simplifications can be obtained for many different test cases. Finally, we validate our results with a user study in which we greatly outperform similar approaches and establish the state of the art in sketch simplification of raster images.

本文言語English
論文番号a121
ジャーナルACM Transactions on Graphics
35
4
DOI
出版ステータスPublished - 2016 7月 11
イベントACM SIGGRAPH 2016 - Anaheim, United States
継続期間: 2016 7月 242016 7月 28

ASJC Scopus subject areas

  • コンピュータ グラフィックスおよびコンピュータ支援設計

フィンガープリント

「Learning to simplify: Fully convolutional networks for rough sketch cleanup」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル