Lie Algebra-Based Kinematic Prior for 3D Human Pose Tracking

Edgar Simo-Serra, Carme Torras, Francesc Moreno-Noguer

研究成果: Conference contribution

5 被引用数 (Scopus)

抄録

We propose a novel kinematic prior for 3D human pose tracking that allows predicting the position in subsequent frames given the current position. We first define a Riemannian manifold that models the pose and extend it with its Lie algebra to also be able to represent the kinematics. We then learn a joint Gaussian mixture model of both the human pose and the kinematics on this manifold. Finally by conditioning the kinematics on the pose we are able to obtain a distribution of poses for subsequent frames that which can be used as a reliable prior in 3D human pose tracking. Our model scales well to large amounts of data and can be sampled at over 100,000 samples/second. We show it outperforms the widely used Gaussian diffusion model on the challenging Human3.6M dataset.

本文言語English
ホスト出版物のタイトルProceedings of the 14th IAPR International Conference on Machine Vision Applications, MVA 2015
出版社Institute of Electrical and Electronics Engineers Inc.
ページ394-397
ページ数4
ISBN(電子版)9784901122153
DOI
出版ステータスPublished - 2015 7月 8
外部発表はい
イベント14th IAPR International Conference on Machine Vision Applications, MVA 2015 - Tokyo, Japan
継続期間: 2015 5月 182015 5月 22

出版物シリーズ

名前Proceedings of the 14th IAPR International Conference on Machine Vision Applications, MVA 2015

Other

Other14th IAPR International Conference on Machine Vision Applications, MVA 2015
国/地域Japan
CityTokyo
Period15/5/1815/5/22

ASJC Scopus subject areas

  • コンピュータ サイエンスの応用
  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Lie Algebra-Based Kinematic Prior for 3D Human Pose Tracking」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル