Light Source Selection in Primary-Sample-Space Neural Photon Sampling

Yuta Tsuji, Tatsuya Yatagawa, Shigeo Morishima

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

This paper proposes a light source selection for photon mapping combined with recent deep-learning-based importance sampling. Although applying such neural importance sampling (NIS) to photon mapping is not difficult, a straightforward approach can sample inappropriate photons for each light source because NIS relies on the approximation of a smooth continuous probability density function on the primary sample space, whereas the light source selection follows a discrete probability distribution. To alleviate this problem, we introduce a normalizing flow conditioned by a feature vector representing the index for each light source. When the neural network for NIS is trained to sample visible photons, we achieved lower variance with the same sample budgets, compared to a previous photon sampling using Markov chain Monte Carlo.

本文言語English
ホスト出版物のタイトルProceedings - SIGGRAPH Asia 2021 Posters, SA 2021
編集者Stephen N. Spencer
出版社Association for Computing Machinery, Inc
ISBN(電子版)9781450386876
DOI
出版ステータスPublished - 2021 12月 14
イベントSIGGRAPH Asia 2021 Posters - Computer Graphics and Interactive Techniques Conference - Asia, SA 2021 - Tokyo, Japan
継続期間: 2021 12月 142021 12月 17

出版物シリーズ

名前Proceedings - SIGGRAPH Asia 2021 Posters, SA 2021

Conference

ConferenceSIGGRAPH Asia 2021 Posters - Computer Graphics and Interactive Techniques Conference - Asia, SA 2021
国/地域Japan
CityTokyo
Period21/12/1421/12/17

ASJC Scopus subject areas

  • コンピュータ グラフィックスおよびコンピュータ支援設計
  • 人間とコンピュータの相互作用

フィンガープリント

「Light Source Selection in Primary-Sample-Space Neural Photon Sampling」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル