TY - JOUR
T1 - Local asymptotic normality of a sequential model for marked point processes and its applications
AU - Nishiyama, Yoichi
PY - 1995/6/1
Y1 - 1995/6/1
N2 - This paper deals with statistical inference problems for a special type of marked point processes based on the realization in random time intervals [0,τu]. Sufficient conditions to establish the local asymptotic normality (LAN) of the model are presented, and then, certain class of stopping times τu satisfying them is proposed. Using these stopping rules, one can treat the processes within the framework of LAN, which yields asymptotic optimalities of various inference procedures. Applications for compound Poisson processes and continuous time Markov branching processes (CMBP) are discussed. Especially, asymptotically uniformly most powerful tests for criticality of CMBP can be obtained. Such tests do not exist in the case of the non-sequential approach. Also, asymptotic normality of the sequential maximum likelihood estimators (MLE) of the Malthusian parameter of CMBP can be derived, although the non-sequential MLE is not asymptotically normal in the supercritical case.
AB - This paper deals with statistical inference problems for a special type of marked point processes based on the realization in random time intervals [0,τu]. Sufficient conditions to establish the local asymptotic normality (LAN) of the model are presented, and then, certain class of stopping times τu satisfying them is proposed. Using these stopping rules, one can treat the processes within the framework of LAN, which yields asymptotic optimalities of various inference procedures. Applications for compound Poisson processes and continuous time Markov branching processes (CMBP) are discussed. Especially, asymptotically uniformly most powerful tests for criticality of CMBP can be obtained. Such tests do not exist in the case of the non-sequential approach. Also, asymptotic normality of the sequential maximum likelihood estimators (MLE) of the Malthusian parameter of CMBP can be derived, although the non-sequential MLE is not asymptotically normal in the supercritical case.
KW - Local asymptotic normality
KW - branching process
KW - marked point process
KW - maximum likelihood estimation
KW - stopping rule
KW - test for criticality
UR - http://www.scopus.com/inward/record.url?scp=0039065359&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0039065359&partnerID=8YFLogxK
U2 - 10.1007/BF00773457
DO - 10.1007/BF00773457
M3 - Article
AN - SCOPUS:0039065359
SN - 0020-3157
VL - 47
SP - 195
EP - 209
JO - Annals of the Institute of Statistical Mathematics
JF - Annals of the Institute of Statistical Mathematics
IS - 2
ER -