Low resolution character recognition by dual eigenspace and synthetic degraded patterns

Jun Sun*, Yushinobu Hotta, Yutaka Katsuyama, Satoshi Naoi

*この研究の対応する著者

研究成果: Conference contribution

10 被引用数 (Scopus)

抄録

As the rapid progress of digital imaging technology, the requirements of character recognition for text embedded in image increase dramatically. Many image text characters are in low resolution with heavy degradation. Traditional OCR methods don't have good recognition performance on these degraded images due to poor binarization. In this paper, a novel feature extraction method based on dual eigenspace and synthetic pattern generation is proposed to recognize character images under low resolution. A subpixel grayscale normalization method is first used to normalize the low resolution character images. The dual eigenspace performs classification from coarse to fine. The multi-templates generated from the synthetic patterns provide good robustness against real degradation. Experimental results indicate that our method is very effective on low resolution Japanese character images.

本文言語English
ホスト出版物のタイトルHDP 2004
ホスト出版物のサブタイトルProceedings of the First ACM Hardcopy Document Processing Workshop
出版社Association for Computing Machinery (ACM)
ページ15-22
ページ数8
ISBN(印刷版)1581139764, 9781581139761
DOI
出版ステータスPublished - 2004
外部発表はい
イベントHDP 2004: Proceedings of the First ACM Hardcopy Document Processing Workshop - Washington, DC, United States
継続期間: 2004 11月 122004 11月 12

出版物シリーズ

名前HDP 2004: Proceedings of the First ACM Hardcopy Document Processing Workshop

Conference

ConferenceHDP 2004: Proceedings of the First ACM Hardcopy Document Processing Workshop
国/地域United States
CityWashington, DC
Period04/11/1204/11/12

ASJC Scopus subject areas

  • 工学(全般)

フィンガープリント

「Low resolution character recognition by dual eigenspace and synthetic degraded patterns」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル