Machine Learning Based Transportation Modes Recognition Using Mobile Communication Quality

Wataru Kawakami, Kenii Kanai, Bo Wei, Jiro Katto

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

In order to recognize the transportation modes without any additional sensor devices, we propose a recognition method by using communication quality factors. In the proposed method, instead of Global Positioning System (GPS) and accelerometer sensors, we collect mobile TCP throughputs, Received Signal Strength Indicators (RSSIs), and cellular base station IDs (Cell IDs) through in-line network measurement when the user enjoys mobile services, such as video streaming service. In accuracy evaluations, we conduct two different field experiments to collect the data in five typical transportation modes (static, walking, riding a bicycle, a bus and a train,) and then construct the classifiers by applying Support Vector Machine (SVM), k-Nearest Neighbor (k-NN) and Random Forest (RF). Results conclude that these transportation modes can be recognized by using communication quality factors with high accuracy as well as the use of accelerometer sensors.

本文言語English
ホスト出版物のタイトル2018 IEEE International Conference on Multimedia and Expo, ICME 2018
出版社IEEE Computer Society
ISBN(電子版)9781538617373
DOI
出版ステータスPublished - 2018 10月 8
イベント2018 IEEE International Conference on Multimedia and Expo, ICME 2018 - San Diego, United States
継続期間: 2018 7月 232018 7月 27

出版物シリーズ

名前Proceedings - IEEE International Conference on Multimedia and Expo
2018-July
ISSN(印刷版)1945-7871
ISSN(電子版)1945-788X

Conference

Conference2018 IEEE International Conference on Multimedia and Expo, ICME 2018
国/地域United States
CitySan Diego
Period18/7/2318/7/27

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用

フィンガープリント

「Machine Learning Based Transportation Modes Recognition Using Mobile Communication Quality」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル