抄録
We consider a certain class of nonsymmetric Markov chains and obtain heat kernel bounds and parabolic Harnack inequalities. Using the heat kernel estimates, we establish a sufficient condition for the family of Markov chains to converge to nonsymmetric diffusions. As an application, we approximate nonsymmetric diffusions in divergence form with bounded coefficients by nonsymmetric Markov chains. This extends the results by Stroock and Zheng to the nonsymmetric divergence forms.
本文言語 | English |
---|---|
ページ(範囲) | 821-866 |
ページ数 | 46 |
ジャーナル | Communications on Pure and Applied Mathematics |
巻 | 66 |
号 | 6 |
DOI | |
出版ステータス | Published - 2013 6月 |
外部発表 | はい |
ASJC Scopus subject areas
- 数学 (全般)
- 応用数学