Maximal regularity of the Stokes operator in an exterior domain with moving boundary and application to the Navier–Stokes equations

Reinhard Farwig, Hideo Kozono, David Wegmann*

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

Consider the (Navier–) Stokes system on an exterior domain with moving boundary and Dirichlet boundary conditions. In 2003 Saal proved that the Stokes operator in a domain with moving boundary has the property of maximal regularity provided that the operator is invertible. Hence his result can be applied if the domain is bounded or by adding a shift to the Stokes operator if the domain is unbounded or the time interval is finite. In this paper, we will generalize his result to a result global in time if the reference domain is an exterior domain. Finally, we will apply this result to the Navier–Stokes equations to obtain a global in time existence theorem for small data.

本文言語English
ページ(範囲)949-972
ページ数24
ジャーナルMathematische Annalen
375
3-4
DOI
出版ステータスPublished - 2019 12月 1

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「Maximal regularity of the Stokes operator in an exterior domain with moving boundary and application to the Navier–Stokes equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル