Medical association rule mining using genetic network programming

Kaoru Shimada*, Ruochen Wang, Kotaro Hirasawa, Takayuki Furuzuki


研究成果: Article査読

1 被引用数 (Scopus)


An efficient algorithm for building a classifier is proposed based on an important association rule mining using genetic network programming (GNP). The proposed method measures the significance of the association via the chi-squared test. Users can define the conditions of important association rules for building a classifier flexibly. The definition can include not only the minimum threshold chi-squared value, but also the number of attributes in the association rules. Therefore, all the extracted important rules can be used for classification directly. GNP is one of the evolutionary optimization techniques, which uses the directed graph structure as genes. Instead of generating a large number of candidate rules, our method can obtain a sufficient number of important association rules for classification. In addition, our method suits association rule mining from dense databases such as medical datasets, where many frequently occurring items are found in each tuple. In this paper, we describe an algorithm for classification using important association rules extracted by GNPwith acquisition mechanisms and present some experimental results of medical datasets.

ジャーナルElectronics and Communications in Japan
出版ステータスPublished - 2008 2月

ASJC Scopus subject areas

  • 信号処理
  • 物理学および天文学(全般)
  • コンピュータ ネットワークおよび通信
  • 電子工学および電気工学
  • 応用数学


「Medical association rule mining using genetic network programming」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。