Mesoporous NiO nanomagnets as catalysts and separators of chemical agents

Mohamed Khairy, Sherif A. El-Safty*, Mohamed Ismael, Hiroshi Kawarada

*この研究の対応する著者

研究成果: Article査読

49 被引用数 (Scopus)

抄録

The development of a sustainable catalyst could potentially provide a long-term solution to industrial processes, especial those in the chemical industry, that require the production of a large quantity of raw materials manufactured from renewable resources. Therefore, establishing a proper design for a highly efficient and long-term reusable catalyst is one of the crucial environmental issues facing humanity. In this study, we developed a simple control for hierarchal mesoporous nickel oxide (NiO) nanomagnets (NMs) with flower- and sphere-like morphology and large mesocage cavities. In the fabrication of super-nanostructure NiO, features that were affected by the shape, surface, and size of particles exhibit high catalytic activities of chemical agents, such as o-aminophenol. Our findings shows that the NiO NM with flower-like morphology NFs has higher catalytic activity toward the oxidation of organic contaminates than that of nanospheres NSs or even other magnetic nanoparticles (NPs) such as Fe 3O 4 NPs. Furthermore, the NiO NMs are capable of the high-gradient magnetic separation of organic contaminants from aquatic life with excellent reusability even after several cycles, which may help in wastewater management and supply. To understand the effectiveness of NiO NM functionalities in terms of hierarchical mesocage parameters, as well as in terms of shape- and size-morphologies in such chemical reactions, surface interaction and magnetic separation with chemical agents and theoretical calculations were performed.

本文言語English
ページ(範囲)1-10
ページ数10
ジャーナルApplied Catalysis B: Environmental
127
DOI
出版ステータスPublished - 2012 10月 30

ASJC Scopus subject areas

  • 触媒
  • 環境科学(全般)
  • プロセス化学およびプロセス工学

フィンガープリント

「Mesoporous NiO nanomagnets as catalysts and separators of chemical agents」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル