Metastability for parabolic equations with drift: Part i

Hitoshi Ishii, Panagiotis E. Souganidis

    研究成果: Article査読

    6 被引用数 (Scopus)

    抄録

    We study the exponentially long-time behavior of solutions to linear uniformly parabolic equations that are small perturbations of transport equations with vector fields having a globally stable (attractive) equilibrium in the domain. The result is that the solutions converge to a constant, which is either the initial value at the stable point or the boundary value at the minimum of the associated quasi-potential. Problems of this type were considered by Freidlin and Wentzell and Freidlin and Koralov, using probabilistic arguments related to the theory of large deviations. Our approach, which is selfcontained, relies entirely on pde arguments, and is flexible to the extent that allows us to study a class of semilinear equations of similar structure. This note also prepares the ground for the forthcoming Part II of this work where we consider general quasilinear problems.

    本文言語English
    ページ(範囲)875-913
    ページ数39
    ジャーナルIndiana University Mathematics Journal
    64
    3
    DOI
    出版ステータスPublished - 2015

    ASJC Scopus subject areas

    • 数学 (全般)

    フィンガープリント

    「Metastability for parabolic equations with drift: Part i」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル