Minimax portfolio optimization under interval uncertainty

Meng Yuan, Xu Lin, Junzo Watada, Vladik Kreinovich

    研究成果: Article査読

    1 被引用数 (Scopus)

    抄録

    In the 1950s, Markowitz proposed to combine different investment instruments to design a portfolio that either maximizes the expected return under constraints on volatility (risk) or minimizes the risk under given expected return. Markowitz's formulas are still widely used in financial practice. However, these formulas assume that we know the exact values of expected return and variance for each instrument, and that we know the exact covariance of every two instruments. In practice, we only know these values with some uncertainty. Often, we only know the lower and upper bounds on these values - i.e., in other words, we only know the intervals that contain these values. In this paper, we show how to select an optimal portfolio under such interval uncertainty.

    本文言語English
    ページ(範囲)575-580
    ページ数6
    ジャーナルJournal of Advanced Computational Intelligence and Intelligent Informatics
    19
    5
    出版ステータスPublished - 2015 9月 1

    ASJC Scopus subject areas

    • 人工知能
    • コンピュータ ビジョンおよびパターン認識
    • 人間とコンピュータの相互作用

    フィンガープリント

    「Minimax portfolio optimization under interval uncertainty」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル