mmpp: A package for calculating similarity and distance metrics for simple and marked temporal point processes

Hideitsu Hino*, Ken Takano, Noboru Murata

*この研究の対応する著者

    研究成果: Article査読

    5 被引用数 (Scopus)

    抄録

    A simple temporal point process (SPP) is an important class of time series, where the sample realization of the process is solely composed of the times at which events occur. Particular examples of point process data are neuronal spike patterns or spike trains, and a large number of distance and similarity metrics for those data have been proposed. A marked point process (MPP) is an extension of a simple temporal point process, in which a certain vector valued mark is associated with each of the temporal points in the SPP. Analyses of MPPs are of practical importance because instances of MPPs include recordings of natural disasters such as earthquakes and tornadoes. In this paper, we introduce the R package mmpp, which implements a number of distance and similarity metrics for SPPs, and also extends those metrics for dealing with MPPs.

    本文言語English
    ページ(範囲)237-248
    ページ数12
    ジャーナルR Journal
    7
    2
    出版ステータスPublished - 2015

    ASJC Scopus subject areas

    • 統計学および確率
    • 数値解析
    • 統計学、確率および不確実性

    フィンガープリント

    「mmpp: A package for calculating similarity and distance metrics for simple and marked temporal point processes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル