Model-based control of diesel engines with multiple fuel injections

Yudai Yamasaki*, Ryosuke Ikemura, Shigehiko Kaneko


研究成果: Article査読

15 被引用数 (Scopus)


We developed a feed-forward controller for a conventional diesel combustion engine with triple fuel injection and experimentally evaluated its performance. A combustion model that discretizes an engine cycle into a number of representative points to achieve a light calculation load is embedded into the controller; this model predicts the in-cylinder gas-pressure-peak timing with information about the operating condition obtained from the engine control unit. The controller calculates the optimal main-fuel-injection timing to control the in-cylinder gas-pressure peak using the prediction result as a controller with a single input and output. The controller’s performance was evaluated by experiments using a four-cylinder diesel engine under changing the target value of the in-cylinder gas-pressure-peak timing during a target-following test and the performance was also evaluated under changing the exhaust gas recirculation ratio at the constant target value of the in-cylinder gas-pressure-peak timing for the disturbance-response test. It was found that the controller could calculate the optimal main-injection timing over a cycle and maintain the targeted in-cylinder gas-pressure-peak timing even when the target value or exhaust gas recirculation changed. The combustion model was also shown to be fast enough at predicting diesel combustion for onboard control.

ジャーナルInternational Journal of Engine Research
出版ステータスPublished - 2018 2月 1

ASJC Scopus subject areas

  • 自動車工学
  • 航空宇宙工学
  • 海洋工学
  • 機械工学


「Model-based control of diesel engines with multiple fuel injections」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。