Model-based estimation of human posture parameters from multiple camera images using genetic algorithms

Jun Ohya*, Fumio Kishino

*この研究の対応する著者

研究成果: Article査読

抄録

A new method for estimating human posture from multiple images using a genetic algorithm is proposed. In the proposed algorithm, the posture parameters to be estimated are assigned to the genes of an individual in the population. For each individual, its fitness evaluates to what extent the human multiple images synthesized by deforming a 3D human model according to the values of the genes are registered to the real human multiple images. Genetic operations such as natural selection, crossover and mutation are performed so that individuals in the next generation are generated. After a certain number of repetitions of these processes, the estimated parameter values are obtained from the individual with the best fitness. Experiments using multiple synthesized images show promising results for estimating 17 joint angle values for each degree of freedom of the joints and also the three translational and three rotational degrees of freedom.

本文言語English
ページ(範囲)2107-2115
ページ数9
ジャーナルKyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers
51
12
DOI
出版ステータスPublished - 1997
外部発表はい

ASJC Scopus subject areas

  • メディア記述
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「Model-based estimation of human posture parameters from multiple camera images using genetic algorithms」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル