TY - JOUR
T1 - Modulation of corticospinal excitability during acquisition of action sequences by observation
AU - Sakamoto, Masanori
AU - Moriyama, Noriyoshi
AU - Mizuguchi, Nobuaki
AU - Muraoka, Tetsuro
AU - Kanosue, Kazuyuki
PY - 2012/5/16
Y1 - 2012/5/16
N2 - Excitability of the corticospinal pathway increases during observation of an action. However, how corticospinal excitability changes during observation of sequential actions in the course of acquiring novel skills (observational learning) remains unexplored. To investigate this, we used a previously unpracticed sequence of ten hand postures. Participants were asked to repeat observation and replication of the sequence. This block of observation and replication was repeated 5 times. During observation of a given hand posture (OK sign), motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation were recorded from hand muscles. In experiment 1, the OK sign appeared in the 9th position of the sequence. Almost all participants could replicate the OK sign only at the 5th block of the experiment. MEP amplitude was greater than that in the control, and decreased with the stages. This suggested that during observational learning of sequential hand postures MEP changed with the progress of the learning. To evaluate this idea, we performed two additional experiments. In experiment 2, the OK sign appeared in the 2nd position. Almost all participants replicated the OK sign even in the 1st block. The MEP amplitude did not change across stages. In experiment 3, the OK sign appeared in the 9th position, but the order of other signs was randomized in every stage. Many participants were not able to replicate the OK sign even during the 5th block of the experiment. The MEP amplitude did not change across stages. These results suggest that: (1) During observational learning modulation of corticospinal excitability is associated with the learning process. (2) Corticospinal excitability decreases as learning progresses.
AB - Excitability of the corticospinal pathway increases during observation of an action. However, how corticospinal excitability changes during observation of sequential actions in the course of acquiring novel skills (observational learning) remains unexplored. To investigate this, we used a previously unpracticed sequence of ten hand postures. Participants were asked to repeat observation and replication of the sequence. This block of observation and replication was repeated 5 times. During observation of a given hand posture (OK sign), motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation were recorded from hand muscles. In experiment 1, the OK sign appeared in the 9th position of the sequence. Almost all participants could replicate the OK sign only at the 5th block of the experiment. MEP amplitude was greater than that in the control, and decreased with the stages. This suggested that during observational learning of sequential hand postures MEP changed with the progress of the learning. To evaluate this idea, we performed two additional experiments. In experiment 2, the OK sign appeared in the 2nd position. Almost all participants replicated the OK sign even in the 1st block. The MEP amplitude did not change across stages. In experiment 3, the OK sign appeared in the 9th position, but the order of other signs was randomized in every stage. Many participants were not able to replicate the OK sign even during the 5th block of the experiment. The MEP amplitude did not change across stages. These results suggest that: (1) During observational learning modulation of corticospinal excitability is associated with the learning process. (2) Corticospinal excitability decreases as learning progresses.
UR - http://www.scopus.com/inward/record.url?scp=84861219240&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84861219240&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0037061
DO - 10.1371/journal.pone.0037061
M3 - Article
C2 - 22615889
AN - SCOPUS:84861219240
SN - 1932-6203
VL - 7
JO - PloS one
JF - PloS one
IS - 5
M1 - e37061
ER -