Molecular dynamics simulation of dipole layer formation at high-k/SiO2 interfaces

T. Watanabe, R. Kuriyama, M. Hashiguchi, R. Takahashi, K. Shimura, A. Ogura, S. Satoh

研究成果: Conference article査読

5 被引用数 (Scopus)


Electric dipole layer formation at high-k/SiO2 interface is reproduced by classical molecular dynamics simulation based on a simple two-body rigid ion model (1). The dipole layer was spontaneously formed by the migration of oxygen ions across the high-k/SiO2 interface. In the case of Al2O3/SiO2, a part of oxygen ions of Al2O3 penetrated into the SiO2 side, resulting in the formation of a built-in potential of about 0.5 V. The opposite migration of oxygen ions, from SiO2 side to high-k oxide side, is also reproduced by using different potential parameters of ionic radius and effective charge. The simulation result suggests that the dipole is not merely formed by the oxygen density difference. Rather, oxygen ions are driven by some interatomic forces at the interface. We discuss the origin of the driving force of the oxygen migration in terms of the multipole moments around cations in the oxides.

ジャーナルECS Transactions
出版ステータスPublished - 2014
イベントSymposium on Semiconductors, Dielectrics, and Metals for Nanoelectronics 12 - 2014 ECS and SMEQ Joint International Meeting - Cancun, Mexico
継続期間: 2014 10月 52014 10月 9

ASJC Scopus subject areas

  • 工学(全般)


「Molecular dynamics simulation of dipole layer formation at high-k/SiO2 interfaces」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。