Motion by Mean Curvature from Glauber–Kawasaki Dynamics

Tadahisa Funaki*, Kenkichi Tsunoda

*この研究の対応する著者

研究成果: Article査読

7 被引用数 (Scopus)

抄録

We study the hydrodynamic scaling limit for the Glauber–Kawasaki dynamics. It is known that, if the Kawasaki part is speeded up in a diffusive space-time scaling, one can derive the Allen–Cahn equation which is a kind of the reaction–diffusion equation in the limit. This paper concerns the scaling that the Glauber part, which governs the creation and annihilation of particles, is also speeded up but slower than the Kawasaki part. Under such scaling, we derive directly from the particle system the motion by mean curvature for the interfaces separating sparse and dense regions of particles as a combination of the hydrodynamic and sharp interface limits.

本文言語English
ページ(範囲)183-208
ページ数26
ジャーナルJournal of Statistical Physics
177
2
DOI
出版ステータスPublished - 2019 10月 1

ASJC Scopus subject areas

  • 統計物理学および非線形物理学
  • 数理物理学

フィンガープリント

「Motion by Mean Curvature from Glauber–Kawasaki Dynamics」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル