Multi-branch neural networks with branch control

Takashi Yamashita*, Kotaro Hirasawa, Jinglu Hu

*この研究の対応する著者

研究成果: Conference article査読

抄録

Multi-branch neural networks have been proposed already in order to realize compact networks. It uses some branches between nodes, and this can improve the learning and generalization ability of the networks. In this paper, Branch Control is proposed on the multi-branch neural networks to further enhance the learning and generalization ability of the networks. Branch Control is to adjust the values of the signals on the branches depending on the network inputs using an additional branch control network. It has been clarified from simulation results of a function approximation problem that multi-branch neural networks with Branch Control could be improved more than that without Branch Control.

本文言語English
ページ(範囲)756-761
ページ数6
ジャーナルProceedings of the IEEE International Conference on Systems, Man and Cybernetics
1
出版ステータスPublished - 2003 11月 24
イベントSystem Security and Assurance - Washington, DC, United States
継続期間: 2003 10月 52003 10月 8

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ハードウェアとアーキテクチャ

フィンガープリント

「Multi-branch neural networks with branch control」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル