Multi-channel speech enhancement using time-domain convolutional denoising autoencoder

研究成果: Conference article査読

25 被引用数 (Scopus)

抄録

This paper investigates the use of time-domain convolutional denoising autoencoders (TCDAEs) with multiple channels as a method of speech enhancement. In general, denoising autoencoders (DAEs), deep learning systems that map noise-corrupted into clean waveforms, have been shown to generate high-quality signals while working in the time domain without the intermediate stage of phase modeling. Convolutional DAEs are one of the popular structures which learns a mapping between noise-corrupted and clean waveforms with convolutional denoising autoencoder. Multi-channel signals for TCDAEs are promising because the different times of arrival of a signal can be directly processed with their convolutional structure, Up to this time, TCDAEs have only been applied to single-channel signals. This paper explorers the effectiveness of TCDAEs in a multichannel configuration. A multi-channel TCDAEs are evaluated on multi-channel speech enhancement experiments, yielding significant improvement over single-channel DAEs in terms of signal-to-distortion ratio, perceptual evaluation of speech quality (PESQ), and word error rate.

本文言語English
ページ(範囲)86-90
ページ数5
ジャーナルProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
2019-September
DOI
出版ステータスPublished - 2019
イベント20th Annual Conference of the International Speech Communication Association: Crossroads of Speech and Language, INTERSPEECH 2019 - Graz, Austria
継続期間: 2019 9月 152019 9月 19

ASJC Scopus subject areas

  • 言語および言語学
  • 人間とコンピュータの相互作用
  • 信号処理
  • ソフトウェア
  • モデリングとシミュレーション

フィンガープリント

「Multi-channel speech enhancement using time-domain convolutional denoising autoencoder」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル