Multi-class composite N-gram language model using multipleword clusters and word successions

Shuntaro Isogai, Katsuhiko Shirai, Hirofumi Yamamoto, Yoshinori Sagisaka

研究成果: Conference contribution

抄録

In this paper, a new language model, the Multi-Class Composite N-gram, is proposed to avoid a data sparseness problem in small amount of training data. The Multi-Class Composite Ngram maintains an accurate word prediction capability and reliability for sparse data with a compact model size based on multiple word clusters, so-called Multi-Classes. In the Multi-Class, the statistical connectivity at each position of the N-grams is regarded as word attributes, and one word cluster each is created to represent positional attributes. Furthermore, by introducing higher order word N-grams through the grouping of frequent word successions, Multi-Class N-grams are extended to Multi-Class Composite N-grams. In experiments, the Multi- Class Composite N-grams result in 9.5% lower perplexity and a 16% lower word error rate in speech recognition with a 40% smaller parameter size than conventional word 3-grams.

本文言語English
ホスト出版物のタイトルEUROSPEECH 2001 - SCANDINAVIA - 7th European Conference on Speech Communication and Technology
出版社International Speech Communication Association
ページ25-28
ページ数4
ISBN(電子版)8790834100, 9788790834104
出版ステータスPublished - 2001
外部発表はい
イベント7th European Conference on Speech Communication and Technology - Scandinavia, EUROSPEECH 2001 - Aalborg, Denmark
継続期間: 2001 9月 32001 9月 7

Other

Other7th European Conference on Speech Communication and Technology - Scandinavia, EUROSPEECH 2001
国/地域Denmark
CityAalborg
Period01/9/301/9/7

ASJC Scopus subject areas

  • 通信
  • 言語学および言語
  • コンピュータ サイエンスの応用
  • ソフトウェア

フィンガープリント

「Multi-class composite N-gram language model using multipleword clusters and word successions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル