Multi-modal service operation estimation using DNN-based acoustic bag-of-features

Satoshi Tamura, Takuya Uno, Masanori Takehara, Satoru Hayamizu, Takeshi Kurata

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

In service engineering it is important to estimate when and what a worker did, because they include crucial evidences to improve service quality and working environments. For Service Operation Estimation (SOE), acoustic information is one of useful and key modalities; particularly environmental or background sounds include effective cues. This paper focuses on two aspects: (1) extracting powerful and robust acoustic features by using stacked-denoising-autoencoder and bag-of-feature techniques, and (2) investigating a multi-modal SOE scheme by combining the audio features and the other sensor data as well as non-sensor information. We conducted evaluation experiments using multi-modal data recorded in a restaurant. We improved SOE performance in comparison to conventional acoustic features, and effectiveness of our multimodal SOE scheme is also clarified.

本文言語English
ホスト出版物のタイトル2015 23rd European Signal Processing Conference, EUSIPCO 2015
出版社Institute of Electrical and Electronics Engineers Inc.
ページ2291-2295
ページ数5
ISBN(電子版)9780992862633
DOI
出版ステータスPublished - 2015 12月 22
外部発表はい
イベント23rd European Signal Processing Conference, EUSIPCO 2015 - Nice, France
継続期間: 2015 8月 312015 9月 4

出版物シリーズ

名前2015 23rd European Signal Processing Conference, EUSIPCO 2015

Other

Other23rd European Signal Processing Conference, EUSIPCO 2015
国/地域France
CityNice
Period15/8/3115/9/4

ASJC Scopus subject areas

  • メディア記述
  • コンピュータ ビジョンおよびパターン認識
  • 信号処理

フィンガープリント

「Multi-modal service operation estimation using DNN-based acoustic bag-of-features」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル