Multi-Objective Topology Optimization of Synchronous Reluctance Motors Using Autoencoder-estimated Flux Barrier Shapes

Masahiro Kishi*, Shinji Wakao, Noboru Murata, Hiroaki Makino, Katsutoku Takeuchi, Makoto Matsushita

*この研究の対応する著者

研究成果: Article査読

抄録

This paper presents a novel topology optimization approach for the design of synchronous reluctance motors based on an autoencoder (AE) combined with the level set (LS) method. As the initial shapes of the LS method, the technique uses the shape generated by the AE, which learns the relationship between the objective function values and the design shapes in the optimization process. The proposed method trains the network parameters such that certain latent variable components represent shape features that are correlated with targeted objective functions. Consequently, shape variations that correspond to changes in multiple objective function values can be independently and continuously visualized. This enables the efficient preparation of new structures that are expected to have high performance. Finally, the AE-generated shapes are used as the initial shapes for LS optimization to derive practical Pareto solutions.

本文言語English
ページ(範囲)12-19
ページ数8
ジャーナルIEEJ Journal of Industry Applications
14
1
DOI
出版ステータスPublished - 2025

ASJC Scopus subject areas

  • 自動車工学
  • エネルギー工学および電力技術
  • 機械工学
  • 産業および生産工学
  • 電子工学および電気工学

フィンガープリント

「Multi-Objective Topology Optimization of Synchronous Reluctance Motors Using Autoencoder-estimated Flux Barrier Shapes」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル