Multi scale block histogram of template feature for pedestrian detection

Shaopeng Tang*, Satoshi Goto

*この研究の対応する著者

研究成果: Conference contribution

4 被引用数 (Scopus)

抄録

In this paper, a feature for human detection from still image is proposed. A multi scale block histogram of template feature (MB-HOT) is developed for human detection by extending the template level in the feature extraction. It integrates gray value information and gradient value information, and reflects relationship of three blocks. The feature is extracted from more macrostructures level and could represent more characteristic of human body. Experiment on INRIA dataset shows that this feature is more discriminative than other features, such as histogram of orientation gradient (HOG). Graphic process unit (GPU) based implementation is proposed to accelerate the calculation of two features, and make it suitable for real time application.

本文言語English
ホスト出版物のタイトルProceedings - International Conference on Image Processing, ICIP
ページ3493-3496
ページ数4
DOI
出版ステータスPublished - 2010
イベント2010 17th IEEE International Conference on Image Processing, ICIP 2010 - Hong Kong
継続期間: 2010 9月 262010 9月 29

Other

Other2010 17th IEEE International Conference on Image Processing, ICIP 2010
CityHong Kong
Period10/9/2610/9/29

ASJC Scopus subject areas

  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • 信号処理

フィンガープリント

「Multi scale block histogram of template feature for pedestrian detection」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル