Multi-scanning based recurrent neural network for hyperspectral image classification

Weilian Zhou, Seiichiro-Kamata

研究成果: Conference contribution

抄録

As the specialty of hyperspectral image (HSI), it consists of 2D spatial and 1D spectral information. In the field of deep learning, HSI classification is an appealing research topic. Many existing methods process the HSI in spatial or spectral domain separately, which cannot fully extract the representative features, and the most used 3D convolutional neural network (3D-CNN) will suffer from mixing up complex spectral information. In this paper, we propose a spatial-spectral unified method by using recurrent neural networks (RNN) and multi-scanning direction strategy to construct spatial-spectral information sequences for learning the spatial dependencies among the central pixel and neighboring pixels. Meanwhile, residual connections and dense connections are introduced into multi-scanning direction sequences to overcome the memory problem in the RNN. The proposed method got 99.58% and 99.81% accuracy respectively on two benchmark datasets: the Pavia University dataset and the Pavia Center dataset. It demonstrates the proposed method can achieve state-of-the-art results.

本文言語English
ホスト出版物のタイトルProceedings of ICPR 2020 - 25th International Conference on Pattern Recognition
出版社Institute of Electrical and Electronics Engineers Inc.
ページ8400-8407
ページ数8
ISBN(電子版)9781728188089
DOI
出版ステータスPublished - 2020
イベント25th International Conference on Pattern Recognition, ICPR 2020 - Virtual, Milan, Italy
継続期間: 2021 1月 102021 1月 15

出版物シリーズ

名前Proceedings - International Conference on Pattern Recognition
ISSN(印刷版)1051-4651

Conference

Conference25th International Conference on Pattern Recognition, ICPR 2020
国/地域Italy
CityVirtual, Milan
Period21/1/1021/1/15

ASJC Scopus subject areas

  • コンピュータ ビジョンおよびパターン認識

フィンガープリント

「Multi-scanning based recurrent neural network for hyperspectral image classification」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル