Multi-view clustering with web and linguistic features for relation extraction

Yulan Yan*, Haibo Li, Yutaka Matsuo, Zhenglu Yang, Mitsuru Ishizuka

*この研究の対応する著者

研究成果: Conference contribution

抄録

Binary semantic relation extraction is particularly useful for various NLP and Web applications. Currently Webbased methods and Linguistic-based methods are two types of leading methods for semantic relation extraction task. With a novel view on integrating linguistic analysis on local text with Web frequent information, we propose a multi-view coclustering approach for semantic relation extraction. One is feature clustering by automatically learning clustering functions for Web features, linguistic features simultaneously based on a subset of entity pairs. The other is relation clustering, using the feature clustering functions to define learning function for relation extraction. Our experiments demonstrate the superiority of our clustering approach comparing with several state-of-theart clustering methods.

本文言語English
ホスト出版物のタイトルAdvances in Web Technologies and Applications - Proceedings of the 12th Asia-Pacific Web Conference, APWeb 2010
ページ140-146
ページ数7
DOI
出版ステータスPublished - 2010
外部発表はい
イベント12th International Asia Pacific Web Conference, APWeb 2010 - Busan
継続期間: 2010 4月 62010 4月 8

Other

Other12th International Asia Pacific Web Conference, APWeb 2010
CityBusan
Period10/4/610/4/8

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • コンピュータ サイエンスの応用

フィンガープリント

「Multi-view clustering with web and linguistic features for relation extraction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル