Multimodal integration learning of object manipulation behaviors using deep neural networks

Kuniaki Noda, Hiroaki Arie, Yuki Suga, Testuya Ogata

研究成果: Conference contribution

14 被引用数 (Scopus)

抄録

This paper presents a novel computational approach for modeling and generating multiple object manipulation behaviors by a humanoid robot. The contribution of this paper is that deep learning methods are applied not only for multimodal sensor fusion but also for sensory-motor coordination. More specifically, a time-delay deep neural network is applied for modeling multiple behavior patterns represented with multi-dimensional visuomotor temporal sequences. By using the efficient training performance of Hessian-free optimization, the proposed mechanism successfully models six different object manipulation behaviors in a single network. The generalization capability of the learning mechanism enables the acquired model to perform the functions of cross-modal memory retrieval and temporal sequence prediction. The experimental results show that the motion patterns for object manipulation behaviors are successfully generated from the corresponding image sequence, and vice versa. Moreover, the temporal sequence prediction enables the robot to interactively switch multiple behaviors in accordance with changes in the displayed objects.

本文言語English
ホスト出版物のタイトルIROS 2013
ホスト出版物のサブタイトルNew Horizon, Conference Digest - 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
ページ1728-1733
ページ数6
DOI
出版ステータスPublished - 2013 12月 1
イベント2013 26th IEEE/RSJ International Conference on Intelligent Robots and Systems: New Horizon, IROS 2013 - Tokyo, Japan
継続期間: 2013 11月 32013 11月 8

出版物シリーズ

名前IEEE International Conference on Intelligent Robots and Systems
ISSN(印刷版)2153-0858
ISSN(電子版)2153-0866

Other

Other2013 26th IEEE/RSJ International Conference on Intelligent Robots and Systems: New Horizon, IROS 2013
国/地域Japan
CityTokyo
Period13/11/313/11/8

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ サイエンスの応用

フィンガープリント

「Multimodal integration learning of object manipulation behaviors using deep neural networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル