Multiple world genetic algorithm to analyze individually advantageous behaviors in complex networks

Yutaro Miura, Fujio Toriumi, Toshiharu Sugawara

研究成果: Conference contribution

2 被引用数 (Scopus)

抄録

We propose a novel method for evolutionary network analysis that uses the genetic algorithm (GA), called the multiple world genetic algorithm, to coevolve appropriate individual behaviors of many agents on complex networks without sacrificing diversity. We conducted the experiments using simulated games of social networking services to evaluate the proposed method. The results indicate that it could effectively evolve the diverse strategy for each agent and the resulting fitness values were almost always larger than those derived through evolution using the conventional evolutionary network analysis using the GA.

本文言語English
ホスト出版物のタイトルGECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion
出版社Association for Computing Machinery, Inc
ページ297-298
ページ数2
ISBN(電子版)9781450367486
DOI
出版ステータスPublished - 2019 7月 13
イベント2019 Genetic and Evolutionary Computation Conference, GECCO 2019 - Prague, Czech Republic
継続期間: 2019 7月 132019 7月 17

出版物シリーズ

名前GECCO 2019 Companion - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion

Conference

Conference2019 Genetic and Evolutionary Computation Conference, GECCO 2019
国/地域Czech Republic
CityPrague
Period19/7/1319/7/17

ASJC Scopus subject areas

  • 人工知能
  • 理論的コンピュータサイエンス
  • ソフトウェア

フィンガープリント

「Multiple world genetic algorithm to analyze individually advantageous behaviors in complex networks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル