Multitentacle Federated Learning Over Software-Defined Industrial Internet of Things Against Adaptive Poisoning Attacks

Gaolei Li, Jun Wu*, Shenghong Li, Wu Yang, Changlian Li

*この研究の対応する著者

研究成果: Article査読

58 被引用数 (Scopus)

抄録

Software-defined industrial Internet of things (SD-IIoT) exploits federated learning to process the sensitive data at edges, while adaptive poisoning attacks threat the security of SD-IIoT. To address this problem, this article proposes a multi-tentacle federated learning (MTFL) framework, which is essential to guarantee the trustness of training data in SD-IIoT. In MTFL, participants with similar learning tasks are assigned to the same tentacle group. To identify adaptive poisoning attacks, a tentacle distribution-based efficient poisoning attack detection (TD-EPAD) algorithm is presented. And also, to minimize the impact of adaptive poisoning data, a stochastic tentacle data exchanging (STDE) protocol is also proposed. Simultaneously, to protect the tentacle's privacy in STDE, all exchanged data will be processed by differential privacy technology. A MTFL prototype system is implemented, which provides extensive ablation experiments and comparison experiments, demonstrating that the accuracy of the global model under attack scenario can be improved with 40%.

本文言語English
論文番号09772337
ページ(範囲)1260-1269
ページ数10
ジャーナルIEEE Transactions on Industrial Informatics
19
2
DOI
出版ステータスPublished - 2023 2月 1
外部発表はい

ASJC Scopus subject areas

  • 制御およびシステム工学
  • 情報システム
  • コンピュータ サイエンスの応用
  • 電子工学および電気工学

フィンガープリント

「Multitentacle Federated Learning Over Software-Defined Industrial Internet of Things Against Adaptive Poisoning Attacks」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル