New families of hyperelliptic curves with efficient gallant-lambert- vanstone method

Katsuyuki Takashima*

*この研究の対応する著者

研究成果: Conference article査読

抄録

The Gallant-Lambert-Vanstone method [14] (GLV method for short) is a scalar multiplication method for elliptic curve cryptography (ECC). In WAP WTLS[47], SEC 2[42], ANSI X9.62[1] and X9.63[2], several domain parameters for applications of the GLV method are described. Curves with those parameters have efficiently-computable endomorphisms. Recently the GLV method for hyperelliptic curve (HEC) Jacobians has also been studied. In this paper, we discuss applications of the GLV method to curves with real multiplication (RM). It is the first time to use RM in cryptography. We describe the general algorithm for using such RM, and we show that some genus 2 curves with RM have enough effciency to be used in the GLV method as in the previous CM case.

本文言語English
ページ(範囲)279-295
ページ数17
ジャーナルLECTURE NOTES IN COMPUTER SCIENCE
3506
DOI
出版ステータスPublished - 2005
外部発表はい
イベント7th International Conference on Information Security and Cryptology - ICISC 2004 - Seoul, Korea, Republic of
継続期間: 2004 12月 22004 12月 3

ASJC Scopus subject areas

  • 理論的コンピュータサイエンス
  • コンピュータ サイエンス(全般)

フィンガープリント

「New families of hyperelliptic curves with efficient gallant-lambert- vanstone method」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル