Nlos multipath classification of gnss signal correlation output using machine learning

Taro Suzuki*, Yoshiharu Amano

*この研究の対応する著者

研究成果: Article査読

31 被引用数 (Scopus)

抄録

This paper proposes a method for detecting non-line-of-sight (NLOS) multipath, which causes large positioning errors in a global navigation satellite system (GNSS). We use GNSS signal correlation output, which is the most primitive GNSS signal processing output, to detect NLOS multipath based on machine learning. The shape of the multi-correlator outputs is distorted due to the NLOS multipath. The features of the shape of the multi-correlator are used to discriminate the NLOS multipath. We implement two supervised learning methods, a support vector machine (SVM) and a neural network (NN), and compare their performance. In addition, we also propose an automated method of collecting training data for LOS and NLOS signals of machine learning. The evaluation of the proposed NLOS detection method in an urban environment confirmed that NN was better than SVM, and 97.7% of NLOS signals were correctly discriminated.

本文言語English
論文番号2503
ジャーナルSensors
21
7
DOI
出版ステータスPublished - 2021 4月 1

ASJC Scopus subject areas

  • 分析化学
  • 情報システム
  • 原子分子物理学および光学
  • 生化学
  • 器械工学
  • 電子工学および電気工学

フィンガープリント

「Nlos multipath classification of gnss signal correlation output using machine learning」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル