TY - JOUR
T1 - Noise filtering of scanning-electron-microscope images for accurate analysis of line-edge and line-width roughness
AU - Hiraiwa, Atsushi
AU - Nishida, Akio
PY - 2012
Y1 - 2012
N2 - The control of line-edge or line-width roughness (LER/LWR) is a challenge, especially for future devices that are fabricated using extremeultraviolet (EUV) lithography. Accurate analysis of the LER/LWR plays an essential role in this challenge and requires the noise involved in scanning- electron-microscope (SEM) images to be reduced by appropriate noise filtering prior to analysis. To achieve this, we simulated the SEM images using a Monte Carlo method, and detected line edges in both experimental and theoretical images after noise filtering using new imageanalysis software. The validity of this software and these simulations was confirmed by a good agreement between the experimental and theoretical results. In the case when the image pixels aligned perpendicular (crosswise) to line edges were averaged, the variance varof that was additionally induced by the image noise decreased with a number NPIX;X of averaged pixels, with exceptions when NPIX;X was relatively large, whereupon the variance increased. The optimal NPIX;X to minimize var(f) was formulated based on a statistical mechanism of this change. LER/LWR statistics estimated using the crosswise filtering remained unaffected when NPIX;X was smaller than the aforementioned optimal value, but monotonically changed when NPIX;X was larger contrary to expectations. This change was possibly caused by an asymmetric scan-signal profile at edges. On the other hand, averaging image pixels aligned parallel (longitudinal) to line edges not only reduced var(f) but smoothed real LER/LWR. As a result, the nominal variance of real LWR, obtained using simple arithmetic, monotonically decreased with a number NPIX;L of averaged pixels. Artifactual oscillations were additionally observed in power spectral densities. Var(f) in this case decreased in inverse proportion to the square root of NPIX;L according to the statistical mechanism clarified here. In this way, the noise filtering has a marked effect on the LER/LWR analysis and needs to be appropriately and carefully applied. These results not only constitute a solid basis, but also considerably improve previous empirical instructions for accurate analyses. The most important lesson from this work is to crosswise average an optimized number of image pixels consulting the aforementioned equation.
AB - The control of line-edge or line-width roughness (LER/LWR) is a challenge, especially for future devices that are fabricated using extremeultraviolet (EUV) lithography. Accurate analysis of the LER/LWR plays an essential role in this challenge and requires the noise involved in scanning- electron-microscope (SEM) images to be reduced by appropriate noise filtering prior to analysis. To achieve this, we simulated the SEM images using a Monte Carlo method, and detected line edges in both experimental and theoretical images after noise filtering using new imageanalysis software. The validity of this software and these simulations was confirmed by a good agreement between the experimental and theoretical results. In the case when the image pixels aligned perpendicular (crosswise) to line edges were averaged, the variance varof that was additionally induced by the image noise decreased with a number NPIX;X of averaged pixels, with exceptions when NPIX;X was relatively large, whereupon the variance increased. The optimal NPIX;X to minimize var(f) was formulated based on a statistical mechanism of this change. LER/LWR statistics estimated using the crosswise filtering remained unaffected when NPIX;X was smaller than the aforementioned optimal value, but monotonically changed when NPIX;X was larger contrary to expectations. This change was possibly caused by an asymmetric scan-signal profile at edges. On the other hand, averaging image pixels aligned parallel (longitudinal) to line edges not only reduced var(f) but smoothed real LER/LWR. As a result, the nominal variance of real LWR, obtained using simple arithmetic, monotonically decreased with a number NPIX;L of averaged pixels. Artifactual oscillations were additionally observed in power spectral densities. Var(f) in this case decreased in inverse proportion to the square root of NPIX;L according to the statistical mechanism clarified here. In this way, the noise filtering has a marked effect on the LER/LWR analysis and needs to be appropriately and carefully applied. These results not only constitute a solid basis, but also considerably improve previous empirical instructions for accurate analyses. The most important lesson from this work is to crosswise average an optimized number of image pixels consulting the aforementioned equation.
KW - filtering
KW - image
KW - line edge roughness
KW - line width roughness
KW - noise
KW - power spectral density
KW - scanning electron microscope
KW - standard deviation
KW - variance
UR - http://www.scopus.com/inward/record.url?scp=84879635390&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84879635390&partnerID=8YFLogxK
U2 - 10.1117/1.JMM.11.4.043010
DO - 10.1117/1.JMM.11.4.043010
M3 - Article
AN - SCOPUS:84879635390
SN - 1932-5150
VL - 11
JO - Journal of Micro/Nanolithography, MEMS, and MOEMS
JF - Journal of Micro/Nanolithography, MEMS, and MOEMS
IS - 4
M1 - 043010
ER -