Non-collision solutions for a second order singular Hamiltonian system with weak force

研究成果: Article査読

26 被引用数 (Scopus)

抄録

Under a weak force type condition, we consider the existence of time periodic solutions of singular Hamiltonian systems: q¨+Vq(q,t)=0q(t+T)=q(t).}We assume V (q, t) < 0 for all q, t and V (q, t), Vq(q, t) → 0 as |q| → ∞. Moreover we assume V (q, t) is of a form: V(q,t)=−1|q|α+U(q,t)where 0 < α <2 and U(q, t) ∈ C2 ((RN\{0}) × R, R) is a T-periodic funetion in t such that |q|α U (q, t), |q|α + 1 Uq(q, t), |q|α+2 Uqq, (q, t), |q|α Ut, (q, t) → 0 as |q| → 0. For α ∈ (1, 2], we prove the existence of a non-collision solution of (HS). For α ∈ (0, 1], we prove that the generalized solution of (HS), which is introduced in [BR], enters the singularity 0 at most one time in its period. Our argument depends on a minimax argument due to [BR] and an estimate of Morse index of corresponding functional, which will be obtained via re-scaling argument.

本文言語English
ページ(範囲)215-238
ページ数24
ジャーナルAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire
10
2
DOI
出版ステータスPublished - 1993 3月 1
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 数理物理学
  • 応用数学

フィンガープリント

「Non-collision solutions for a second order singular Hamiltonian system with weak force」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル