NON‐PARAMETRIC APPROACH IN TIME SERIES ANALYSIS

Masanobu Taniguchi*, Masao Kondo

*この研究の対応する著者

研究成果: Article査読

9 被引用数 (Scopus)

抄録

Abstract. Suppose that {Xt} is a Gaussian stationary process with spectral density f(Λ). In this paper we consider the testing problem , where K(Λ) is an appropriate function and c is a given constant. This test setting is unexpectedly wide and can be applied to many problems in time series. For this problem we propose a test based on K{fn(Λ)}dΛ where fn(Λ) is a non‐parametric spectral estimator of f(Λ), and we evaluate the asymptotic power under a sequence of non‐parametric contiguous alternatives. We compare the asymptotic power of our test with the other and show some good properties of our test. It is also shown that our testing problem can be applied to testing for independence. Finally some numerical studies are given for a sequence of exponential spectral alternatives. They confirm the theoretical results and the goodness of our test.

本文言語English
ページ(範囲)397-408
ページ数12
ジャーナルJournal of Time Series Analysis
14
4
DOI
出版ステータスPublished - 1993 7月
外部発表はい

ASJC Scopus subject areas

  • 統計学および確率
  • 統計学、確率および不確実性
  • 応用数学

フィンガープリント

「NON‐PARAMETRIC APPROACH IN TIME SERIES ANALYSIS」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル