Normal form and global solutions for the Klein-Gordon-Zakharov equations

T. Ozawa, K. Tsutaya, Y. Tsutsumi

研究成果: Article査読

45 被引用数 (Scopus)

抄録

In this paper we study the global existence and asymptotic behavior of solutions for the Cauchy problem of the Klein-Gordon-Zakharov equations in three space dimensions. We prove that for small initial data, there exist the unique global solutions of the Klein-Gordon-Zakharov equations. We also show that these solutions approach asymptotically the free solutions as t → ∞. Our proof is based on the method of normal forms introduced by Shatah [12], which transforms the original system with quadratic nonlinearity into a new system with cubic nonlinearity.

本文言語English
ページ(範囲)459-503
ページ数45
ジャーナルAnnales de l'Institut Henri Poincare (C) Analyse Non Lineaire
12
4
DOI
出版ステータスPublished - 1995 7月 1
外部発表はい

ASJC Scopus subject areas

  • 分析
  • 数理物理学
  • 応用数学

フィンガープリント

「Normal form and global solutions for the Klein-Gordon-Zakharov equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル