On a unit group generated by special values of Siegel modular functions

T. Fukuda*, Keiichi Komatsu

*この研究の対応する著者

    研究成果: Article査読

    8 被引用数 (Scopus)

    抄録

    There has been important progress in constructing units and S-units associated to curves of genus 2 or 3. These approaches are based mainly on the consideration of properties of Jacobian varieties associated to hyperelliptic curves of genus 2 or 3. In this paper, we construct a unit group of the ray class field k6 of ℚ(exp(2πi/5)) modulo 6 with full rank by special values of Siegel modular functions and circular units. We note that k6 = ℚ(exp(2πi/15), 5√-24). Our construction of units is number theoretic, and closely based on Shimura's work describing explicitly the Galois actions on the special values of theta functions.

    本文言語English
    ページ(範囲)1207-1212
    ページ数6
    ジャーナルMathematics of Computation
    69
    231
    出版ステータスPublished - 2000 7月

    ASJC Scopus subject areas

    • 代数と数論
    • 応用数学
    • 計算数学

    フィンガープリント

    「On a unit group generated by special values of Siegel modular functions」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル