On global well-posedness for nonlinear semirelativistic equations in some scaling subcritical and critical cases

Kazumasa Fujiwara*, Vladimir Georgiev, Tohru Ozawa

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

In this paper, the global well-posedness of semirelativistic equations with a power type nonlinearity on Euclidean spaces is studied. In two dimensional Hs scaling subcritical case with 1≤s≤2, the local well-posedness follows from a Strichartz estimate. In higher dimensional H1 scaling subcritical case, the local well-posedness for radial solutions follows from a weighted Strichartz estimate. Moreover, in three dimensional H1 scaling critical case, the local well-posedness for radial solutions follows from a uniform bound of solutions which may be derived by the corresponding one dimensional problem. Local solutions may be extended by a priori estimates.

本文言語English
ページ(範囲)239-256
ページ数18
ジャーナルJournal des Mathematiques Pures et Appliquees
136
DOI
出版ステータスPublished - 2020 4月

ASJC Scopus subject areas

  • 数学 (全般)
  • 応用数学

フィンガープリント

「On global well-posedness for nonlinear semirelativistic equations in some scaling subcritical and critical cases」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル