On Path Regression with Extreme Learning and the Linear Configuration Space

Victor Parque*, Tomoyuki Miyashita

*この研究の対応する著者

研究成果: Conference contribution

抄録

This paper studies the path regression problem, that is learning motion planning functions that render trajectories from initial to end robot configurations in a single forward pass. To this end, we have studied the path regression problem using the linear transition in the configuration space and shallow neural schemes based on Extreme Learning Machines. Our computational experiments involving a relevant and diverse set of 6-DOF robot trajectories have shown path regression's feasibility and practical efficiency with attractive generalization performance in out-of-sample observations. In particular, we show that it is possible to learn neural policies for path regression in about 10 ms. - 31 ms. and achieving 10-3 - 10-6 Mean Squared Error on unseen out-of-sample scenarios. We believe our approach has the potential to explore efficient algorithms for learning-based motion planning.

本文言語English
ホスト出版物のタイトルProceedings - 2022 6th IEEE International Conference on Robotic Computing, IRC 2022
出版社Institute of Electrical and Electronics Engineers Inc.
ページ383-390
ページ数8
ISBN(電子版)9781665472609
DOI
出版ステータスPublished - 2022
イベント6th IEEE International Conference on Robotic Computing, IRC 2022 - Virtual, Online, Italy
継続期間: 2022 12月 52022 12月 7

出版物シリーズ

名前Proceedings - 2022 6th IEEE International Conference on Robotic Computing, IRC 2022

Conference

Conference6th IEEE International Conference on Robotic Computing, IRC 2022
国/地域Italy
CityVirtual, Online
Period22/12/522/12/7

ASJC Scopus subject areas

  • 人工知能
  • コンピュータ サイエンスの応用
  • 計算数学
  • モデリングとシミュレーション
  • 数値解析

フィンガープリント

「On Path Regression with Extreme Learning and the Linear Configuration Space」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル