On periodic mappings arising from the QRT system

Atsushi Nobe*

*この研究の対応する著者

研究成果: Article査読

4 被引用数 (Scopus)

抄録

An eight-parameter family of two-dimensional piecewise linear mappings is discussed. Since the dynamical system is obtained from the QRT system through the ultradiscretization, the dynamical system is called the ultradiscrete QRT system. The ultradiscrete QRT system is considered to be integrable because it has an eight-parameter family of invariant curves which fills the plane. It is shown that, for particular parameters, the dynamical system can be regarded as a dynamical system on a fan associated with the conserved quantity. It is also shown that such a dynamical system has periodic solutions for any initial value. Therefore we call such a dynamical system the ultradiscrete periodic QRT system. From the ultradiscrete periodic QRT system, the periodic QRT system is obtained in terms of the inverse ultradiscretization.

本文言語English
ページ(範囲)229-237
ページ数9
ジャーナルTheoretical and Applied Mechanics Japan
52
出版ステータスPublished - 2003
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)
  • 凝縮系物理学
  • 材料力学

フィンガープリント

「On periodic mappings arising from the QRT system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル