On renormalized dissipative solutions for conservation laws

Satoru Takagi*

*この研究の対応する著者

研究成果: Article査読

抄録

We introduce a new notion of renormalized dissipative solutions for a scalar conservation law ut+divF(u)=f with locally Lipschitz F and L1 data, and prove the equivalence of such solutions and renormalized entropy solutions in the sense of Bénilan et al. The structure of renormalized dissipative solutions is useful to deal with relaxation systems than the renormalized entropy scheme. As an application of our result, we prove the existence of renormalized dissipative solutions via relaxation.

本文言語English
ページ(範囲)e2483-e2489
ジャーナルNonlinear Analysis, Theory, Methods and Applications
63
5-7
DOI
出版ステータスPublished - 2005 11月 30

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「On renormalized dissipative solutions for conservation laws」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル