On sufficiency of the definition of MCQ Alexander pairs in terms of invariants for handlebody-knots

Tomo Murao*

*この研究の対応する著者

研究成果: Article査読

抄録

A multiple conjugation quandle is an algebraic structure whose axioms are motivated from handlebody-knot theory. By using an MCQ Alexander pair f, which is a pair of maps corresponding to a linear extension of a multiple conjugation quandle, we can construct the f-twisted Alexander matrices, which produce invariants for handlebody-knots. The purpose of this paper is to show the sufficiency of the definition of MCQ Alexander pairs in constructing the f-twisted Alexander matrices from the aspect of linear extensions of multiple conjugation quandles. Furthermore, we introduce the notion of cohomologous for MCQ Alexander pairs, which induces the same invariant for handlebody-knots.

本文言語English
ジャーナルBeitrage zur Algebra und Geometrie
DOI
出版ステータスAccepted/In press - 2022

ASJC Scopus subject areas

  • 代数と数論
  • 幾何学とトポロジー

フィンガープリント

「On sufficiency of the definition of MCQ Alexander pairs in terms of invariants for handlebody-knots」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル