## 抄録

The reciprocal link between the reduced Ostrovsky equation and the A ^{(2)} _{2} two-dimensional Toda (2D-Toda) system is used to construct the N-soliton solution of the reduced Ostrovsky equation. The N-soliton solution of the reduced Ostrovsky equation is presented in the form of pfaffian through a hodograph (reciprocal) transformation. The bilinear equations and the τ-function of the reduced Ostrovsky equation are obtained from the period 3-reduction of the B or C 2D-Toda system, i.e. the A ^{(2)} _{2} 2D-Toda system. One of the τ-functions of the A ^{(2)} _{2} 2D-Toda system becomes the square of a pfaffian which also becomes a solution of the reduced Ostrovsky equation. There is another bilinear equation which is a member of the 3-reduced extended BKP hierarchy. Using this bilinear equation, we can also construct the same pfaffian solution.

本文言語 | English |
---|---|

論文番号 | 355203 |

ジャーナル | Journal of Physics A: Mathematical and Theoretical |

巻 | 45 |

号 | 35 |

DOI | |

出版ステータス | Published - 2012 |

外部発表 | はい |

## ASJC Scopus subject areas

- 統計物理学および非線形物理学
- 統計学および確率
- モデリングとシミュレーション
- 数理物理学
- 物理学および天文学（全般）

## フィンガープリント

「On the τ-functions of the reduced Ostrovsky equation and the A^{(2)}

_{2}two-dimensional Toda system」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。