On the focusing energy-critical fractional nonlinear schrödnger equations

Yonggeun Cho, Gyeongha Hwang*, Tohru Ozawa

*この研究の対応する著者

研究成果: Article査読

7 被引用数 (Scopus)

抄録

We consider the fractional nonlinear Schrödinger equation (FNLS) with non-local dispersion |∇|α and focusing energy-critical Hartree type nonlinearity [-(|x|-2α * |u|2)u]. We first establish a global well-posedness of radial case in energy space by adopting Kenig-Merle arguments [20] when the initial energy and initial kinetic energy are less than those of ground state, respectively. We revisit and highlight long time perturbation, profile decomposition and localized virial inequality. As an application of the localized virial inequality, we provide a proof for finite time blowup for energy critical Hartree equations via commutator technique introduced in [2].

本文言語English
ページ(範囲)161-192
ページ数32
ジャーナルAdvances in Differential Equations
23
3-4
出版ステータスPublished - 2018 3月 1

ASJC Scopus subject areas

  • 分析
  • 応用数学

フィンガープリント

「On the focusing energy-critical fractional nonlinear schrödnger equations」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル