On the formulation, performance and design choices of Cost-Curve Occupancy Grids for stereo-vision based 3D reconstruction

Martim Brandão, Ricardo Ferreira, Kenji Hashimoto, José Santos-Victor, Atsuo Takanishi

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

We present a grid-based 3D reconstruction method which integrates all costs given by stereo vision into what we call a Cost-Curve Occupancy Grid (CCOG). Occupancy probabilities of grid cells are estimated in a Bayesian formulation, from the likelihood of stereo cost measurements taken at all distance hypotheses. This is accomplished with only a small set of probabilistic assumptions which we discuss in the paper. We quantitatively characterize the method's performance under different conditions of both image noise and number of used stereo pairs, compared also to traditional algorithms. We complement the study by giving insights on design choices of CCOGs such as likelihood model, window size of the cost function and use of a hole filling method. Experiments were made on a real-world outdoors dataset with ground-truth data.

本文言語English
ホスト出版物のタイトルIROS 2014 Conference Digest - IEEE/RSJ International Conference on Intelligent Robots and Systems
出版社Institute of Electrical and Electronics Engineers Inc.
ページ1818-1823
ページ数6
ISBN(電子版)9781479969340
DOI
出版ステータスPublished - 2014 10月 31
イベント2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2014 - Chicago, United States
継続期間: 2014 9月 142014 9月 18

出版物シリーズ

名前IEEE International Conference on Intelligent Robots and Systems
ISSN(印刷版)2153-0858
ISSN(電子版)2153-0866

Conference

Conference2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2014
国/地域United States
CityChicago
Period14/9/1414/9/18

ASJC Scopus subject areas

  • 制御およびシステム工学
  • ソフトウェア
  • コンピュータ ビジョンおよびパターン認識
  • コンピュータ サイエンスの応用

フィンガープリント

「On the formulation, performance and design choices of Cost-Curve Occupancy Grids for stereo-vision based 3D reconstruction」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル