On the geometric stabilization for discrete Hamiltonian systems with holonomic constraints

Hiroaki Yoshimura*, Kenji Soya

*この研究の対応する著者

研究成果: Conference contribution

1 被引用数 (Scopus)

抄録

This paper develops a discrete Hamiltonian system with holonomic constraints with Geometric Constraint Stabilization. It is first shown that constrained mechanical systems with nonconservative external forces can be formulated by using canonical symplectic structures in the context of Hamiltonian systems. Second, it is shown that discrete holonomic Hamiltonian systems can be developed via the discretization based on the Backward Differentiation Formula and also that geometric constraint stabilization can be incorporated into the discrete Hamiltonian systems. It is demonstrated that the proposed method enables one to stabilize constraint violations effectively in comparison with conventional methods such as Baumgarte Stabilization and Gear-Gupta-Leimkuhler Stabilization, together with an illustrative example of linkage mechanisms.

本文言語English
ホスト出版物のタイトルProceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009
ページ517-521
ページ数5
PART A
DOI
出版ステータスPublished - 2010 6月 24
イベント2009 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009 - San Diego, CA, United States
継続期間: 2009 8月 302009 9月 2

出版物シリーズ

名前Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009
番号PART A
4

Conference

Conference2009 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, DETC2009
国/地域United States
CitySan Diego, CA
Period09/8/3009/9/2

ASJC Scopus subject areas

  • コンピュータ ネットワークおよび通信
  • ハードウェアとアーキテクチャ
  • 電子工学および電気工学

フィンガープリント

「On the geometric stabilization for discrete Hamiltonian systems with holonomic constraints」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル