On the R -boundedness of solution operator families of the generalized Stokes resolvent problem in an infinite layer

Hirokazu Saito*

*この研究の対応する著者

    研究成果: Article査読

    7 被引用数 (Scopus)

    抄録

    In this paper, we prove the R-boundedness of solution operator families of the generalized Stokes resolvent problem in an infinite layer with resolvent parameter λεΣ∈,γ0, where Σ∈,γ0={λεC||argλ|≤π-∈,|λ|≥γ0}(0<∈<πâ•2,γ0>0), and our boundary conditions are nonhomogeneous Neumann on upper boundary and Dirichlet on lower boundary. We want to emphasize that we can choose 0 < ∈ < π / 2 and γ<inf>0</inf> > 0 arbitrarily, although usual parabolic theorem tells us that we must choose a large γ<inf>0</inf> > 0 for given 0 < ∈ < π / 2. We also prove the maximal L<inf>p</inf> - L<inf>q</inf> regularity theorem of the nonstationary Stokes problem as an application of the R-boundedness. The key of our approach is to apply several technical lemmas to the exact solution formulas of a resolvent problem. The formulas are obtained through the solutions of the ODEs, in the Fourier space, driven by the partial Fourier transform with respect to tangential space variable x′=(x1,...,xN-1).

    本文言語English
    ページ(範囲)1888-1925
    ページ数38
    ジャーナルMathematical Methods in the Applied Sciences
    38
    9
    DOI
    出版ステータスPublished - 2015 6月 1

    ASJC Scopus subject areas

    • 数学 (全般)
    • 工学(全般)

    フィンガープリント

    「On the R -boundedness of solution operator families of the generalized Stokes resolvent problem in an infinite layer」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

    引用スタイル