On the Stokes operator in general unbounded domains

Reinhard Farwig*, Hideo Kozono, Hermann Sohr

*この研究の対応する著者

研究成果: Article査読

29 被引用数 (Scopus)

抄録

It is known that the Stokes operator is not well-defined in Lq-spaces for certain unbounded smooth domains unless q = 2. In this paper, we generalize a new approach to the Stokes resolvent problem and to maximal regularity in general un-bounded smooth domains from the three-dimensional case, see [7], to the n-dimensional one, n ≥ 2, replacing the space Lq, 1 < q < ∞, by L̃q where L̃q = L̃q ∩ L2 for q ≥ 2 and L̃q = Lq + L2 for 1 < q < 2. In particular, we show that the Stokes operator is well-defined in Lq for every unbounded domain of uniform C1,1-type in Rn, n ≥ 2, satisfies the classical resolvent estimate, generates an analytic semigroup and has maximal regularity.

本文言語English
ページ(範囲)111-136
ページ数26
ジャーナルHokkaido Mathematical Journal
38
1
DOI
出版ステータスPublished - 2009
外部発表はい

ASJC Scopus subject areas

  • 数学 (全般)

フィンガープリント

「On the Stokes operator in general unbounded domains」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル