On the unboundedness of the ratio of species and resources for the diffusive logistic equation

Jumpei Inoue*, Kousuke Kuto

*この研究の対応する著者

研究成果: Article査読

9 被引用数 (Scopus)

抄録

Concerning a class of diffusive logistic equations, Ni [1, Abstract] proposed an optimization problem to consider the supremum of the ratio of the L1 norms of species and resources by varying the diffusion rates and the profiles of resources, and moreover, he gave a conjecture that the supremum is 3 in the one-dimensional case. In [1], Bai, He and Li proved the validity of this conjecture. The present paper shows that the supremum is infinity in a case when the habitat is a multi-dimensional ball. Our proof is based on the sub-super solution method. A key idea of the proof is to construct an L1 unbounded sequence of sub-solutions.

本文言語English
ページ(範囲)2441-2450
ページ数10
ジャーナルDiscrete and Continuous Dynamical Systems - Series B
26
5
DOI
出版ステータスPublished - 2021 5月

ASJC Scopus subject areas

  • 離散数学と組合せ数学
  • 応用数学

フィンガープリント

「On the unboundedness of the ratio of species and resources for the diffusive logistic equation」の研究トピックを掘り下げます。これらがまとまってユニークなフィンガープリントを構成します。

引用スタイル